
XY-pic User’s Guide

Kristoffer H. Rose 〈kris@diku.dk〉×

Version 2.12, October 25, 1994

Abstract

XY-pic is a package for typesetting graphs and diagrams
using plain TEX, LATEX, AMS-LATEX, and AMS-TEX.
Several modes of input are supported; this guide con-
centrates on how to typeset ‘matrix-like’ diagrams like
commutative diagrams in the following style:

U

��

y

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

✺✺
✺✺

##❍
❍❍

❍❍
❍❍

❍❍

))

x

❙❙❙❙
❙❙❙❙

❙❙❙❙
❙❙❙❙

❙❙❙❙

X ×Z Y

��
q

//
p X

��
f

Y //g
Z

was typeset by the XY-pic input lines

\diagram

U \ddrto_y \drto \drrto^x \\

& X \times_Z Y \dto^q \rto_p & X \dto_f \\

& Y \rto^g & Z

\enddiagram

Such diagrams have the following characteristics:

• Specified as a matrix of entries that are automat-
ically aligned in rows and columns.

• Any entry may be connected to any other entry
using a variety of arrow styles all rotated and
stretched as required.

• Arrows may be decorated with labels that are tied
to a specified point along the arrow and extend in
a particular direction.

• Arrows may be paired, cross each other, and
visit/bend around other entries ‘on the way’.

• Complete ‘low-level’ graphic language for drawing
independently of the matrix structure.

Remark: XY-pic release 2.12 is also a β-release of XY-
pic version 3, referred to here as v3 . This is greatly
enhanced and extended relative to version 2. Many fea-
tures described in this document are therefore obsolete

×DIKU (Computer Science dept.), University of Copenhagen,
Universitetsparken 1, DK–2100 København Ø, Denmark.

but remain valid (as a special ‘compatibility’ mode).
We remark it at the end of a section whenever this is
the case; look in the XY-pic Reference Manual [3] for
the details.

Contents

1 Basics 2

1.1 Loading 2
1.2 Entries 2

1.3 Arrows 2
1.4 Labels 3

1.5 Breaks 3
1.6 Bends 3

1.7 Speeding up typesetting 4

2 More Arrows and Labels 4

2.1 Explicit positioning of labels 4
2.2 Extra tips 5

2.3 Sliding arrows sideways 5

2.4 More targets 5
2.5 Arrows passing under 6

2.6 More bending arrows 7
2.7 Defining new arrow types 7

3 More Entries 8
3.1 Text . 8

3.2 Extra entries outside the matrix 8
3.3 Resizing and spacing 9

3.4 Style . 9
3.5 Framing and circling 9

3.6 Naming for later use as targets 10

3.7 Grouping objects 10

4 Availability and Further Information 11
4.1 Getting XY-pic 11

4.2 The future and backwards compatibility 11

Answers to all exercises 11

List of Figures

1 Standard directions for straight arrows. 3
2 Standard tips. 6

1

Introduction

This guide explains some features of XY-pic version 2
that are related to diagram typesetting – newer fea-
tures are described in the reference manual [3] (some
are mentioned in italicised comments). It assumes that
you have some experience in using TEX for typeset-
ting mathematics, e.g., have studied [1, ch. 16–19], [2,
sec. 3.3], or [4].
The first section describes what you need to get

started. Section 2 and 3 explain advanced use of arrows
and entries, respectively. Section 4 explains where and
under what conditions XY-pic is available and points
to further information. Throughout we give exercises
that you should be able to solve as you go along; all
exercises are answered at the end, just prior to the bib-
liography.

1 Basics

This section explains the XY-diagram construction con-
cepts needed to get started with typesetting category
theory diagrams.

1.1 Loading

XY-pic is loaded by inserting a line with the command

\input xypic

in the definitions part of your document (after any
\documentstyle line).1

This describes loading in compatibility mode
– in v3 the individual features of XY-pic can
be loaded separately.

1.2 Entries

A diagram is created by the commands

\diagram . . . \enddiagram

where the ‘. . . ’ should be replaced by entries to be
aligned in rows and columns where

• entries in a row are separated by & and

• rows are separated by \\.

For example,

A
∑m

i=n i
2

• D

cc●●●●●●●●●

1This will load XY-pic in a special ‘compatibility mode’ which
defines the commands described in this guide as they have been
available since version 2.4 of the package. Other modes are avail-
able; see the Reference Manual [3] for details.

was typeset by

\diagram

A &\sum_{i=n}^m {i^2} \framed \\

& \bullet & D \ulto

\enddiagram

Notice the following:

• entries are typeset as mathematics (in ‘text style’),

• all entries are centered,

• the separation between rows and columns is usu-
ally quite large in a diagram,

• entries at the end of rows that are empty may be
omitted, and most importantly:

• “XY-commands” (like \framed and \ulto here)
can decorate an entry and connect it with others
without changing the diagram layout.

The style and spacing can be changed; we discuss that
in section 3.

In v3 several matrices can be typeset in the
same picture (and refer to each other’s en-
tries), and matrices can be rotated.

1.3 Arrows

An ‘arrow’ in anXY-pic diagram is a generic term for the
drawn decorations that are added to the basic matrix
structure. In XY-pic all arrows must be specified along
with the entry they start in; this is called their base
entry. Each particular arrow then refers explicitly to
its target entry.
The most commonly used arrows have names start-

ing with either u or d for up or down, followed by either
l or r for left and right, e.g., the arrow \drto reads
‘down and then right to’. Figure 1 shows the possible
straight arrows, all leaving the entry base and ending at
the entry with their name in. The relative coordinates
specified in this way are purely logical, e.g., if the di-
agram contains very wide entries then the arrows will
be nearly horizontal. All the constructed arrows are
aligned along the line between the centers of the base
and target entries; they will not automatically disap-
pear under entries that they cross (we discuss how this
is achieved in section 2.5).
If you are making large diagrams where the above

predefined arrows are not sufficient then you can always
resort to the general form \xto[hop] where hop should
be a sequence of the letters dulr as described above,
e.g., \xto[u] is equivalent to \uto but \xto[uuulll]
has no short-form equivalent.
The directions also exist with to replaced by various

other basic line styles:

to

��✴
✴✴
✴✴

line

✴✴
✴✴
✴ dashed

✴
✴
✴ dotted double

✴✴
✴✴
✴

✴✴
✴✴
✴

2

\uullto \uulto \uuto \uurto \uurrto

\ullto \ulto

ff▲▲▲▲▲▲▲▲▲▲
\uto

OO

\urto

88rrrrrrrrrr
\urrto

\llto \ltooo base

[[✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽✽

CC✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝✝

jj❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

ee❏❏❏❏❏❏❏❏❏❏

OO 99tttttttttt

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐oo //

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐✐✐✐

yyttt
ttt

ttt
t

�� %%❏❏
❏❏❏

❏❏❏
❏❏

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯

��✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝
✝✝

��✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽ \rto // \rrto

\dllto \dlto

xxrrr
rrr

rrr
r

\dto

��

\drto

&&▲▲
▲▲▲

▲▲▲
▲▲

\drrto

\ddllto \ddlto \ddto \ddrto \ddrrto

Figure 1: Standard directions for straight arrows.

Exercise 1: Typeset

•

✤
✤
✤

❅❅
❅❅

❅❅
❅

❅❅
❅❅

❅❅
❅ •

• •oo

In v3 mnemonic names are used for arrows,
e.g., the five basic line styles above correspond
to arrows {->}, {-}, {--}, {..}, and {=}.

1.4 Labels

You can put labels on arrows. Labels are conceptual-
ized as sub- and superscripts on arrows such that they
are placed in the usual positions (as ‘limits’), i.e., ^
reads ‘above’ and _ below on an arrow pointing right
but the positions depend only on the direction of the
arrow. For example,

\diagram

X \rto^a_b & Y & Z \lto^A_B

\enddiagram

will set

X //a

b
Y Zoo

A

B

Labels that do not consist of a single letter, digit, or
control sequence, should be enclosed in {. . . }.

The placement of the labels only depends on the di-
rection of the arrow: it is placed perpendicular to the
center of the arrow (measured from the centers of the
objects at the ends). More details concerning labels
are given in section 2.1.

Exercise 2: Typeset the second axiom of category
theory as

A //f

��f ;g ❅❅
❅❅

❅❅
❅ B

��
g

g;h

❅❅
❅❅

❅❅
❅

C //
h

D

(2)

1.5 Breaks

It is also possible to ‘break’ an arrow with a label using
the character |:

\diagram A \rto|f & B \enddiagram

will set

A //f B

If you just want an empty break you should use the spe-
cial \hole break: the arrow A // B was typeset by
including \diagram A \rto|\hole & B \enddiagram

in the text. You may mix a break with other labels,
but the break should always be last. There is more on
breaks in section 2.2.

Exercise 3: Typeset the first axiom of category the-
ory as the display

A

��
f

//f
B

~~
iB
⑦⑦
⑦

⑦⑦
⑦

��
g

B //
g C

(1)

1.6 Bends

There are special versions of to-arrows that go ‘around’
a neighbor entry and point to something ‘behind’ it:

3

here are the horizontal ones:

\lltou^a
\lltod^a

entry
with

commands

EDGF a

��
GF ED

a

��

BC@A
a

OO @A BC
a

OO
\rrtou^a
\rrtod^a

There are similar vertical ones named \ddtol, \ddtor,
\uutol, and \uutor, and there is a special set of ‘self’
arrows:

\toul^a

EDGF a@A
// \tour^a

GF ED
a

BC
oo

\todl^aBC@A
a

GF// \todr^a@A BC
a

EDoo

and

\tolu^a

@AGFa ED ��
\toru^a

BCEDaGF��

\told^aGF@Aa BC OO \tord^a EDBC a@AOO
These only exist for the to line style. In section 2.6 we
explain how other variants can be constructed.

Exercise 4: Typeset

x

GF EDf

��
f(x)BC@A

f−1

OO

1.7 Speeding up typesetting

One thing that you will notice is that XY-pic is some-
times slow in typesetting diagrams (this is to be ex-
pected considering the number of drawing operations
performed as reflected by the number last in each
xymatrix message). You can instruct XY-pic to save
the details of a particular diagram in a file name.xyc
(for ‘compiled XY-pic’) every time the diagram changes
by replacing the \diagram command with

\diagramcompileto{name}

This will cut the typesetting time considerably when-
ever the diagram is retypeset without change.
Note: this is only safe for diagrams that obey

the following restriction: all entries should start with
a non-expandable token like an ordinary (non-active)
character, \relax, or {}.

This is a v3 feature mentioned here because
it is a common question.

2 More Arrows and Labels

In this section we explain a number of variations of
the arrow commands that are useful in commutative
diagrams.

2.1 Explicit positioning of labels

The label commands explained in section 1.4 place the
label text near the center of the arrow. This, however,
may be changed by inserting a place between the ^, _,
or |, and the actual label. In general you may insert
the following:

• < will place the label at the point where the actual
arrow begins, i.e., ‘appears from under’ the base,
so \diagram A \rto^<{+} &B \enddiagram will

typeset A //+
B .

• Similarly, > will place the label at the point
where the actual arrow ends, i.e., ‘disappears
below’ the target, so \diagram A \rto^>{+} &B

\enddiagram will typeset A //+B .

• << and >> will place the following label at a
point just a bit2 further from the beginning and
end of the arrow, so \diagram A \rto^>>{+}

&B \enddiagram will typeset A //+
B . Using

more <s will move the label further in.

• More <s and >s may be given to make this
distance larger: \diagram A \rto^>>>{+} &B

\enddiagram will typeset A //+
B .

• A factor in ()s: (a) indicates that the label
should be ‘tied’ to the point a of the way from
the center of the base entry (called (0)) to
the center of the target (called (1)) instead of
in the middle, so \diagram A \rto^(.3){+} &B

\enddiagram will typeset A //+
B .

• A factor can be given after some < or >s: in that
case the place is computed as if the base was the
place specified by the <s and the target the place
specified by the >s: \diagram A \rto^<(0){+}

&B \enddiagram will typeset A //+
B .

• Finally, a - means the same as <>(.5), i.e.,
place at the middle of the arrow rather than
the middle between the base and target, so

A×B × C ×D //+
B was typeset by

2‘A bit’ is in fact a TEX \jot which is 3pt.

4

\diagram

A\times B\times C\times D \rto^-{+} &B

\enddiagram

It becomes A×B × C ×D //+
B without - .

Exercise 5: Typeset

A

�� ∗
b

 ∗
c

❅❅
❅❅

❅❅
❅

//∗d
D

B C

2.2 Extra tips

You can use the ‘break’ feature described in section 1.5
to add extra arrow tips. This is done by using special
‘standard tip’ labels shown as ℓ in \drto ℓ in figure 2.
Tips with more than one component must be en-

closed in {}, and tips can be rotated 180◦ by the
\rotate prefix or optionally by the factor (f), −2 <

f ≤ 2, to rotate it f × 90◦ clockwise. Furthermore
you can enclose any math in \squash{ . . . } to make it
of zero size and use it as a tip; \squash attempts to
center it but sometimes you might have to ‘help’ by
adding spacing (e.g., using \, and \strut).
An arrow may have several breaks. They must, how-

ever, be given in the same order as they appear from
the base to the target of the arrow as illustrated here:

\rto|a|>\stop //a
✤

\rto|<\stop|a //✤
a

\rto|<\hole|<<\stop //✤

\rto|>>\tip ////

\rto|<\hole|<<\ahook //� �

\rto|<<\hole|<<<\tip ////

\rto|>{\squash\circ} //◦

\rto|<{\rotate\tip} //oo

\rline|>{\rotate(.6)\tip} EE

Notice how we use an extra |<\hole break to shorten
arrows to make space for ‘large’ tails like hooks that
have most of their ink on the wrong side.3

The above tips work with the basic arrow types to
(as shown), line, dashed, and dotted, however, only
\stop works with all arrows, i.e., also with double. If
you want an arrowhead on a double arrow then you
must use \Tip:

\rdouble|>\Tip +3

\rdouble|<\stop|>>\Tip|>\Tip
✤ +3 +3

3In version 2.6 and before this was automatic with a |<< break
but this was a bug which has been fixed.

The v3 arrow command uses a much sim-
pler scheme: it interprets arrow generic defi-
nitions, e.g., {|-->>} becomes

✤ // //❴❴❴❴ .

2.3 Sliding arrows sideways

It is often desirable to have several arrows between two
objects. This can be done by sliding either or both
arrows sideways by giving the distance as an optional
TEX dimension enclosed in <>s: it specifies how far
‘sideways’ the arrow should be moved, e.g.,

\diagram

A \drto<1ex>^a_{.} \\

& B \ulto<1ex>^b \rto<1ex>^c

& C \lto<1ex>^d_{.}

\enddiagram

will typeset

A

��

a
. ❅❅
❅❅

❅❅
❅

B

__

b

❅❅❅❅❅❅❅ //c

Coo
d

.

A positive distance will slide the arrow in the ‘^-
direction’, e.g., the two arrows above are slid in the
direction of the labels a and b, respectively; a nega-
tive distance in the ‘_-direction’. The distance <1ex>

is often appropriate since it corresponds roughly to the
height of letters like ‘x’, independently of the used type
size.

In v3 it is also possible to curve arrows and
there is special support for 2-cells.

2.4 More targets

In the general arrow constructions \xto, \xline,
\xdashed, \xdotted, and \xdouble, the target address
can be given in a large number of formats called posi-
tions . The full range of possibilities is described in the
reference manual [3]; here is a number of useful possi-
bilities:

• [r,c] , where r, c are integers, denotes the relative
entry found r rows below and c columns to the
right of the current entry (the current entry itself
is thus [0,0]). Each such pair corresponds to a
[hop] as described in section 1.3, e.g., [1,2] is
the same as [drr].

• "r,c" , where r, c are positive integers, denotes
the absolute entry found in the rth row and cth
column of the diagram; the top left entry is "1,1".

• t′;t , where t′ is any target, changes the base entry
of the present arrow to t′ and then sets the target
to t relative to the original base. For example,

\diagram

5

\tip

**
**❱❱❱

❱❱❱

❱❱❱❱
❱❱

\stop

**
✖❱❱

❱❱❱❱

❱❱❱❱
❱❱

\atip

**
*❱❱❱

❱❱❱

❱❱❱❱
❱❱

\astop

**
✖❱❱❱

❱❱❱

❱❱❱❱
❱❱

\ahook

**
� w❯❯❯❯

❯❯

❯❯❯❯
❯❯

\aturn

**
7❯❯❯

❯❯❯

❯❯❯❯
❯❯

\btip

**
*❱❱❱

❱❱❱

❱❱❱❱
❱❱

\bstop

**✖
❱❱❱❱

❱❱

❱❱❱❱
❱❱

\bhook

**
w�❯❯

❯❯❯❯

❯❯❯❯
❯❯

\bturn

**
W

❯❯❯❯
❯❯

❯❯❯❯
❯❯

{\tip\stop}

++
++✗❲❲

❲❲❲❲❲

❲❲❲❲❲
❲❲

{\rotate\tip}

++
kk❳❳❳❳❳

❳❳❳

❳❳❳❳❳❳
❳❳

{\rotate(1)\tip\astop}

,,
��✚❩❩❩❩❩❩

❩❩❩❩

❩❩❩❩❩❩❩
❩❩❩

{\squash{+}}

++
+❳❳

❳❳❳❳❳❳

❳❳❳❳❳❳
❳❳

Figure 2: Standard tips.

A \\

B & C \ulto <1ex>

\ulto;[] <1ex>

\enddiagram

typesets

A

B C

__❅❅❅❅❅❅❅ ��❅
❅❅

❅❅
❅❅

i.e. the \ulto arrow starts at the [ul] entry and
ends in the current entry (remember from §1.3
that \ulto is the same as \xto[ul]).

Composite targets may be constructed: any complete
target can be followed by

• +vector or -vector which changes the target to be
a zero-sized one at the position obtained by adding
or subtracting the vector to its center, or

• !vector which moves the center of the target by
the vector ;

where a vector should have the form

• <Dx,Dy> , where Dx, Dy are TEX dimensions, is
the vector with those coordinates,

• the following ‘corner offsets’ of a target are vectors
as shown:

ooL // R

��

D

OO
U

♣♣♣
♣♣♣

♣♣

xx
DL

◆◆◆
◆◆◆

◆◆

&&
DR

◆◆◆◆◆◆◆◆

ffUL ♣♣♣♣♣♣♣♣

88 UR

(they must be specified in upper case), and

• 0 is the zero vector.

These constructions are useful for pointing to corners
of entries, e.g.,

\diagram

\left[\sum^i\right] & j \lto+UR

\enddiagram

will typeset
[

∑i
]

j

hh❘❘❘❘❘❘

Exercise 6: What is the difference between a target
t and the target t+0?

The position language of v3 is much richer
than this: there it is possible to build stacks
of positions, typeset material in the middle of
locating a position, etc.

2.5 Arrows passing under

The ‘x-form’ of the morphisms may pass under any
other entry: Just insert ’t, i.e., a quote character fol-
lowed by a target, for each entry that should be visited
except the last, ‘ordinary & final’ entry:

\diagram

\circ

\xdashed ’[dr] ^a |<\stop

’[rr]+D ^b

[drrr] ^c |>\tip

& \circ & \circ & \circ \\

\circ & \circ & \circ & \circ

\enddiagram

6

typesets
◦

a
�

❅
❅

❅
❅

b

③
③

③
③

c

""❉
❉

❉
❉◦ ◦ ◦

◦ ◦ ◦ ◦

As you see, labels are set separately on each segment.

Exercise 7: Typeset the ‘lambda cube’

λω λC

λ2

③③③③③③③③
λP2

✇✇✇✇✇✇✇✇✇

λω λPω

λ→

④④④④④④④④
λP

①①①①①①①①

Hint : ‘going under’ an empty entry leaves a small gap
at that location.

2.6 More bending arrows

Finally, the x-form of arrows may bend around entries:
just insert ‘d t, i.e., a backquote, direction d, target t,
for each ‘turn’ that starts out in the d-direction and
ends in a quarter turn towards the target t.
The possible directions are named like hops:

HOINJMKL

dl
⑧⑧
⑧⑧
⑧⑧

��

d
�� dr

❄❄
❄❄

❄❄

��

r//

ur
⑧⑧⑧⑧⑧⑧

??

uOO
ul❄❄❄❄❄❄

__

l oo

and the possible targets include all those discussed
above and in the reference manual [3].
Actually the direction letter is only required for the

first in a series of turns since the final direction of one
turn is the default for the following turn. The quarter
turns will have radius 10pt by default, but this can
be changed to any dimension R from a particular turn
and onwards by inserting /R immediately after the ’

of the turn. Here is an example involving all of these
features:

\diagram

\circ \xto ‘r[d] ^a

‘[rr] ^b

‘/4pt[rr] ^c

‘[rrr]^d

‘[drrr]^e

[drrr]^f

& \circ & \circ & \circ \\

\circ & \circ & \circ & \circ

\enddiagram

typesets

◦ ED
a

@Ab ��c

��
d

��e

��
f

◦ ◦ ◦

◦ ◦ ◦ ◦

The example illustrates the following points:

• If the segment can not be made as short as re-
quired then it will point ‘past’ the target. This is
useful for ‘going around’ entries.

• Each target appears as many times as there are
quarter turns towards it, except the last target
that appears both as the last ‘-target and once as
an ‘ordinary’ target to set the final stretch.

• The sizes of the intermediate targets are ignored.

The bending arrows in section 1.6 are special cases of
the above construction. There are several more ad-
vanced possibilities described in [3], notably the possi-
bility for non-quarter turns.

The v3 reference manual explains how the
in- and out-going direction and orientation of
each turn can be specified.

2.7 Defining new arrow types

All of the above arrows are really defined using the
primitive \morphism that is used like this:

\morphism 〈line type〉 〈tip〉 〈tip〉 〈path〉

where

• 〈line type〉 is one of the following (shown above a
sample):

\solid

❏❏
❏❏

❏❏
❏❏

❏ \Solid

❏❏
❏❏

❏❏
❏❏

❏

❏❏
❏❏

❏❏
❏❏

❏ \Ssolid

❏❏
❏❏

❏❏
❏❏

❏

❏❏
❏❏

❏❏
❏❏

❏

❏❏
❏❏

❏❏
❏❏

❏

\dashed

❏
❏

❏
❏

❏ \Dashed

❏
❏

❏
❏

❏

❏
❏

❏
❏

❏ \Ddashed

❏
❏

❏
❏

❏

❏
❏

❏
❏

❏

❏
❏

❏
❏

❏

\dotted \Dotted \Ddotted

or the special {\dottedwith{x}} (where x may
be any math formula) to typeset lines like

xx
xx

xx

7

• The first 〈tip〉 specifies what to do with the target
end of the connection, the second with the base
end. Each must be either \notip if no tip is de-
sired, one of the tips described in section 2.2, or
several such tips grouped together in {. . . } (e.g.,
use {\tip\stop} to get the tip of //✤). Re-
member to use the special \Tip with \Solid and
\Dashed.

As an example, the \ddrto command described in sec-
tion 1.3 is really just an abbreviation for \morphism

\solid \tip \notip [ddr].
You can also define new ‘straight arrow types’ that

are available in all the standard directions shown in
the figure in section 1.3 as well as the ‘x-form’. The
following uses this for a new arrow type mapsto:

\definemorphism{mapsto}\solid\tip\stop

\diagram

A \rmapsto^f & A\times A \dlmapsto_g \\

B \umapsto

\enddiagram

typesets

A
✤ //f

A×A✽

||

g

①①
①①
①①
①①
①

B
❴

OO

You should only use \definemorphism if you need it,
though, since it defines many control sequences. The
reference manual [3] describes how to define your own
groups of bent arrows and how to make double and
triple tips. It also describes a much more general way
of defining new arrows.

The v3 arrow and directional commands
make this obsolete in that most arrows can
be specified directly in a very compact way.

3 More Entries

This section explains what can go in an entry and how
the general form of the entries is changed.

3.1 Text

The simplest form of text in diagrams is set with the
\text command:

\diagram

\text{Program} \rto & \text{Code}

\enddiagram

will typeset

Program // Code

If your text contains several centered lines, you can
use \Text instead:

\diagram

\Text{A very long and stupid\\program}

\rrto^-{\Text{weird\\arrow}}

&& \Text<2pc>{Com\-pli\-cated\\Code}

\enddiagram

will typeset

A very long and stupid
program

//
weird
arrow

Com-
pli-
cated
Code

which illustrates that \text and \Text can also be used
to format labels; in particular notice how the - place
specifier is useful in this context. Lines will be broken
where you have specified \\ and if they are longer than
any TEX dimension specified in <>s between \Text and
the text in {}s.

In v3 many variations are allowed, provided
the DVI-driver can support them. This in-
cludes rotation and scaling of text.

3.2 Extra entries outside the matrix

It is possible to put extra entries in your diagrams that
are not part of any ‘entry’ of the matrix created by &

and \\. This is done with the ‘excursion command’

\save t \Drop {stuff } . . .\restore . . .

where t should be a target in one of the formats de-
scribed in section 2.4 and stuff may be anything that
can appear in an ordinary entry.
This will create a ‘pseudo entry’ at t contain-

ing {stuff }: any XY-pic commands following before
\restore will be relative to the pseudo entry rather
than to the entry hosting the excursion. Here is an
example, using an entry relative position as target:

\diagram

A \drline

& \save +<3cm,0cm>

\Drop{\Text<8pc>{%

This is a very big commentary

but it does not otherwise affect

the diagram.}}

\lto \dto \restore

\\

& B \rline & C \rline & D

\enddiagram

will typeset

A

❅❅
❅❅

❅❅
❅

This is a very big
commentary but it
does not otherwise
affect the diagram.

oo

vv♠♠♠
♠♠♠

B C D

8

It illustrates how a ‘down’ arrow does not necessarily
have to point particularly straight down—in this case
because it is based in the displaced pseudo entry. There
is a variant of \Drop called \drop that will set the
argument formula without any surrounding margin.

The v3 position language makes excursions
much simpler and more general.

3.3 Resizing and spacing

Entries can have their size and spacing changed in the
following ways:

• \grow{formula} is the same as formula except
that it is made the current objectmargin larger in
all directions.

• \grow<D>{formula}, where D is a TEX dimen-
sion, is similar except that D is used for the en-
largement instead—negative D means shrink it.

• \squarify{formula} will make formula square by
extending the smaller of its vertical/horizontal size
equal to the larger.

• \squarify<D>{formula}, where D is a TEX di-
mension, is similar except the square will be D on
each side.

You can change the objectmargin from the default jot
using the command

\objectmargin {〈dimen〉}

The usual spacing between the rows and columns can
be adjusted relative to the default 2pc by

\spreaddiagramrows {〈dimen〉}
\spreaddiagramcolumns {〈dimen〉}

that will increase the row/column separation by the
specified amount (similar to \spreadmatrixlines of
AMS-TEX).

Finally, the minimal width and minimal height of all
objects can be set by

\objectwidth {〈dimen〉}
\objectheight {〈dimen〉}

With the v3 matrix feature an individual en-
try can be readjusted and resized without af-
fecting the overall structure. Also the entire
matrix can be rotated.

3.4 Style

As mentioned above, the entries of a diagram are set
in math mode in text style. You may change this by
redefinining the macro \objectstyle, and the label
style by redefining \labelstyle. We can combine this
with the above to get ‘small diagrams’, e.g., typing

$\left(

\spreaddiagramrows{-1.2pc}

\spreaddiagramcolumns{-1.2pc}

\def\objectstyle{\scriptstyle}

\def\labelstyle{\scriptstyle}

\diagram

A \rto^{a} & B \dto^{b} \\

A’\uto^{a’} & B’\lto_{b’}

\enddiagram

\right)$

in a paragraph will typeset “

A //a
B

�� b
A′

OO
a′

B′oo b
′

”.

You can even abandon the use of math mode entirely:
the command \def \objectstyle {\hbox}will change
the format of entries to plain text.

With the v3 matrix command the style and
shape of individual entries can be changed.

3.5 Framing and circling

You can put a box around an entry in a diagram by
inserting the \framed command anywhere in the en-
try; if you prepend a TEX dimension in <>s then the
box will have rounded corners with radius as the TEX
dimension. There is also \Framed that does the same
but makes a double box. Here are some examples:

\framed \Framed

\framed<5pt>
'& %$! "# \Framed<100pt>

(with maximum)
ON MLHI JKGF ED@A BC

As you can see, the radius is scaled down to be useable;
furthermore none of these commands are guaranteed to
produce curves with a radius of more than 40pt.

In v3 many more frames are available.

In case you want ‘perfect’ circles there are \circle

and \Circle commands that will just use half the
width of the current entry as their outer radius un-
less an explicit radius is given in <>s. They should be
used with \squarify; e.g.,

\spreaddiagramrows{-1pc}

\diagram

\rto^>(.5){\text{start}}

& \squarify<1em>{0} \circled \toru^b \rto_a

& \squarify<1em>{1} \circled \rto^b \tord_a

9

& \squarify<1em>{2} \circled \rto^b

\xto ‘r+D ‘[l] _a ‘[l] [l]

& \squarify<1em>{3} \Circled

\xto ‘r+U ‘[lll]^b ‘[lll] [lll]

\xto ‘r+D ‘[ll] _a ‘[ll] [ll]

\enddiagram

will typeset

//start
0?>=<89:; BCEDbGF��

//
a 1?>=<89:; //b

EDBCa@AOO 2?>=<89:; //b

EDBCa@AOO 3?>=<89:;'&%$!"# BCEDbGF��
EDBCa@AOO

Many more frames types are described in the reference
manual [3].

In v3 objects can be truly round.

3.6 Naming for later use as targets

If you build an entry with a long and complicated ex-
cursion then you might wish to be able to refer to it
later. XY-pic provides a mechanism for this: if you
specify

\save . . .\go="name" \restore

then the last pseudo entry (target with the last object
\Drop’ed on it) build within the . . . excursion will be
saved for later referencing as "name"; however, it is
only possible to reference it ‘after’ the naming, that
is, from entries right of the base entry in the current
row and below it. We need this if we want to point to
objects created in excursions:

\diagram

A \drline

& \save \go+<3cm,0cm>\Drop{\Text<8pc>{

This is still just a big commentary.}}

\lto \dto \go="comment" \restore \\

& B \rline & C \xto"comment" & D

\enddiagram

typesets

A

❅❅
❅❅

❅❅
❅

This is still just a
big commentary.

oo

vv♠♠♠
♠♠♠

♠♠♠
♠♠

B C

;;①①①①①①①
D

In v3 naming of labels is possible.

3.7 Grouping objects

Sometimes you wish to frame or otherwise treat a rect-
angle of objects as a single object. This is possible with
special excursions of this form:

\save t \merge . . . \restore . . .

will make the entire rectangle of entries with the host
entry in one corner and the target entry t in the other
corner the ‘current entry’ until the \restore. Here is
an example where we frame a couple of objects and
point from the frame:

\diagram

0,{-1} & 0,0

\save\go[1,2]\merge\framed<5pt>

\xto[0,-1]\xto[1,-1]\xto[0,3]\xto[1,3]

\restore

& 0,1 & 0,2 & 0,3 \\

1,{-1} & 1,0 & 1,1 & 1,2 & 1,3 \enddiagram

will typeset

0,−1 0, 0'& %$

 ! "#

kk❱❱❱❱❱

oo

==④④④④④④④
//

0, 1 0, 2 0, 3

1,−1 1, 0 1, 1 1, 2 1, 3

As you can see, the center of the \merged object is the
same as the one of the target preceeding it.

Here is a more advanced example where we create
two \merged objects with center in their center, name
them and then connect to them:

A // B

��

A′ // B′

��
C

OO

Doo C′

OO

D′oo

22

22❡❡❡❡❡❡❡

can be typeset by

\def\g#1{%

\save

\go[dr]\merge\go+C\merge\go="g#1"\framed

\restore}

%

\diagram

\g1 A\rto & B\dto & \g2 A’\rto & B’\dto \\

C\uto & D\lto & C’\uto & D’\lto

\save \go"g1" \xdotted"1,4"|>\tip \restore

\save \go"2,1"\xdashed"g2" |>\tip \restore

\enddiagram

The centering trick is achieved by using \merge twice
in \g: the second just merges with a dummy object
with center where we want the final merged object to
be centered! Then we can make arrows from/to the two
frames by using the two new targets "g1" and "g2".

Merging is part of the v3 position language.

10

4 Availability and Further Infor-

mation

4.1 Getting XY-pic

The latest version of XY-pic can be retrieved from In-
ternet anonymous ftp host ftp.diku.dk in /diku/

users/kris/TeX as well as from ftp.mpce.mq.edu.au

in /pub/maths/TeX in files starting with xy. It has
also been contributed to the CTAN archives where it
is located (unpacked only) in the directory macros/

generic/diagrams/xypic.

License: XY-pic is free software in the sense that it is
available under the following license conditions:

XY-pic: Graphs and Diagrams with TEX
c© 1991–1994 Kristoffer H. Rose

The XY-pic package is free software; you can
redistribute it and/or modify it under the
terms of the GNU General Public License as
published by the Free Software Foundation;
either version 2 of the License, or (at your
option) any later version.

The XY-pic package is distributed in the
hope that it will be useful, but without any
warranty; without even the implied warranty
of merchantability or fitness for a particular
purpose. See the GNU General Public License
for more details.

You should have received a copy of the
GNU General Public License along with this
package; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

In practice this means that you are free to use XY-pic
for your documents but if you send parts of the source
code of XY-pic (or modified versions of it) to someone
then you are obliged to ensure that the full source text
of XY-pic is available to that someone (the full text of
the license explains this in somewhat more detail ©̈⌣).

4.2 The future and backwards compat-

ibility

XY-pic version 3 is currently under development
through collaboration between the author and Ross
Moore. Partial funding for this project has been
provided by a Macquarie University Research Grant
(MURG), by the Australian Research Council (ARC),
and through a research agreement with the Digital
Equipment Corporation (DEC).

We invite all users of XY-pic to participate in this
venture with suggestions for adding features, eliminat-
ing misfeatures, and anything else that might improve
the usefulness of XY-pic. Please contact the author for
further information or if you want to be kept up to date
with the development.
This does mean, however, that from time to time

features may turn out to be redundant because they
can be implemented in a better way. This is currently
the case for the following features of version 2.6 and
earlier versions; in each case a fix is proposed:

• Automatic ‘shortening’ of arrow tails by |<< break
was a bug and has been ‘fixed’ so it does not work
any more. Fix : Put a |<\hole break before it as
described in section 2.2.

• The version 2.6 * position operator is not avail-
able. Fix : Use the : and :: operators (described
in detail in the reference manual [3]).

• Using t1;t2:(x,y) as the target of an arrow com-
mand does not work. Fix : Enclose it in braces,
i.e., write {t1;t2:(x,y)}.

• The older \pit, \apit, and \bpit commands are
not defined. Fix : Use \dir{>} (or \tip) with
variants and rotation.

• The obsolete notation where an argument in
braces to \rto and the others was automatically
taken to be a ‘tail’ is not supported. Fix : Use the
supported |<. . . notation.

Finally note that sometimes the spacing with ver-
sion 2.12 is slightly different from that of earlier ver-
sions which had some spacing bugs.
Please report all other things that do not work the

same in version 2.6 and 2.12 to the author.

Answers to all exercises

Answer to exercise 1 (p.3): The author did

\diagram

\bullet \ddashed\drdouble\rline

& \bullet \ddotted \\

\bullet & \bullet \lto

\enddiagram

Answer to exercise 2 (p.3): The author used the
display

$$\diagram

A \rto^f \drto_{f;g}

& B \dto^g \drto^{g;h} \\

& C \rto_h & D

\enddiagram

\qquad(2)$$

11

Answer to exercise 3 (p.3): The author used

$$\diagram

A \dto_f \rto^f & B \dlto|{i_B} \dto^g \\

B \rto_g & C

\enddiagram

\qquad(1)$$

Answer to exercise 4 (p.4): The author did

\diagram

x \rrtou|f && f(x) \lltod|{f^{-1}}

\enddiagram

Answer to exercise 5 (p.5): The author used the
display

\diagram

A \dto ^>>\ast ^b \drto ^>>\ast ^c

\rto ^>>\ast ^d & D \\

B & C \enddiagram

Answer to exercise 6 (p.6): The size: t+0 always
has zero size.

Answer to exercise 7 (p.7): The author typed

\diagram

& \lambda\omega \rrline\xline’[d][dd]

& & \lambda C \ddline

\\

\lambda2\urline \rrline\ddline

& & \lambda P2 \urline\ddline

\\

& \lambda\underline\omega \xline’[r][rr]

& & \lambda P\underline\omega

\\

\lambda{\to} \rrline\urline

& & \lambda P \urline

\enddiagram

References

[1] Donald E. Knuth. The TEXbook. Addison-Wesley,
1984.

[2] Leslie Lamport. LATEX—A Document Preparation
System. Addison-Wesley, 2nd edition, 1994.

[3] Kristoffer H. Rose and Ross Moore. XY-pic refer-
ence manual. Mathematics Report 94–155, MPCE,
Macquarie University, NSW 2109, Australia, June
1994. For version 2.10+. Latest version available by
anonymous ftp in ftp.diku.dk: /diku/users/

kris/TeX/xyrefer.ps.Z.

[4] Michael D. Spivak. The Joy of TEX—A Gourmet
Guide to Typesetting with the AMS-TEX Macro
Package. American Mathematical Society, second
edition, 1990.

12

